

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 1 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Peacomm.C
Cracking the nutshell

Version: 1.0

Last Update: 21th September 2007

Author: Frank Boldewin / www.reconstructer.org

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 2 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Table of Contents

ABSTRACT .. 3

INTRODUCTION ... 4

TARGET OVERVIEW .. 5

1ST STAGE DECRYPTER OR HOW TO FOOL ANTIVIRUS
EMULATOR-ENGINES.. 6

ANTI-DEBUGGING AND DEFEATING 8

TEA DECRYPTION AND THE TIBS UNPACKER.................10

FILES DROPPING AND WINDOWS DRIVER-CODE
INFECTION..12

FINDING THE OEP AND DUMPING THE NATIVE
PEACOMM.C BINARY ...13

CLEANING THE NATIVE CODE FROM VME DETECTION
TRICKS..14

DISSECTING THE ROOTKIT DRIVER16

CONCLUSION ..22

REFERENCES ...22

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 3 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

1 Abstract
"No nutshell is as hard as it can't be cracked with the right tools.
My tools are my teeth and I'm mad about nuts of every kind!"

The nutcracker

On 22th August 2007 I received an email informing me about “New
Member Confirmation”, including Confirmation Number, Login-ID and
Login-Password. To stay secure I should immediately change my Login
info on a provided website link. So I’ve started investigating what
surprises are awaiting people clicking on such kind of links. Next to a
friendly message telling me that my download should start in some
seconds, I also got a browser exploit for free, to ensure the “software
package” gets really shipped. “Hey that’s cool”, I thought by myself. “It’s
like Kinder Surprise® - three in one!” Unfortunately, at this time I hadn’t
enough incentive for a deep analysis and so I just stored the malicious file
called applet.exe in my archive for later fun with it. Last week I had
enough free time to throw it into IDA and my debuggers. After
approximately one hour of investigation it was clear for me that the time
had come for a new research paper, as this malware disclosed several
interesting techniques, especially in the rootkit area. The opponent for this
paper is called “Peacomm.C” and outlines the currently latest variant of
this infamous P2P malware. The security industry gave it also several
other names like “Storm Worm”, “Nuwar” or “Zhelatin”. The first variant
“Peacomm.A” was detected in the mid of January 2007 and since then it
has grown to one of the most successful botnets ever seen in the wild. It
uses an adjusted Overnet protocol for spreading and communication. Its
main intense is spamming and DDoS attacking. Also the fast-flux service
network which is being used by the criminals behind the attacks is really
amazing and frightening at the same time. As its botnet activities are not
the focus of this essay, I’ve included interesting other papers covering
these topics.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 4 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

2 Introduction
This paper mainly focuses on two topics. The first one aims to extract the
native Peacomm.C code from the original crypted/packed code, which
means the following issues are covered in detail:

 First stage XOR decrypter
 Second stage TEA decrypter
 TIBS Unpacker
 Anti-Debugging code
 Files dropping
 The driver-code infection
 Finding the OEP to the native Peacomm code
 Finding and patching the VM-detection tricks

The second topic covers all the rootkit techniques of the spooldr.sys
driver. These issues are:

 Security products monitoring/disabling
 SSDT file hiding
 Shellcode injection for process spawning
 System files locking

As goody to this paper, also included are the different binary dumps and
commented IDA .idb files.

As always use caution when reproducing the work described here.
Consider employing a virtual machine like VMWare or Virtual PC and
perform the analysis on an isolated network to avoid the damage that
could be caused by this malware. Use at your own risk!

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 5 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

3 Target Overview
To get an overview of our target first let’s have a look at the chart in
figure 3.1

Figure 3.1:

The first thing that happens in “area 1” right after the start of applet.exe
is an easy XOR decryption of the data in “area 3” followed by jumping to
this area which contains code now and performs several tasks, like files
dropping, decrypting and unpacking the native Peacomm code in “area 2”
and so forth. In the end all the imports for the native binary are being
collected/set and the code in “area 2” gets executed to attend to its “real
business”. But let’s cover this step by step.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 6 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

4 1st Stage decrypter or how to fool
Antivirus emulator-engines

The figure 4.1 shows the complete routine used to decrypt the code in
“area 3”. The instruction at 0x40101e tells us the data of EAX it getting
XORed with the value of 0x0149594f. But also take a look at the
instructions above. Next to XORing the data the return value of a call to
the function FreeIconList is added at 0x401019 as well.

Figure 4.1:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 7 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Why this? - You might ask now, because the FreeIconList call should
always return the same value in EAX. So, this is a really useless
behaviour, right? The answer is: This is an often used malware trick to
crash or trigger an exception in Antivirus sandbox engines, because
FreeIconList is a legacy function of windows and thus often not
emulated by AV engines. While doing the research for this paper I’ve
downloaded several samples of applet.exe and found out that next to the
XOR key also lots of other legacy API functions are used and some them
returned non-zero values, thus very important for a clean decryption.
Additionally, I’ve also discovered that the decryption engine completely
changes from time to time. All of these routines were easy to understand
for a reverser, but definitely doing its jobs to hide from AV signature
based malware detection. Right after all the data has been decrypted
(0x38d0 bytes) a jump at 0x40102d executes the code in “area 3” at
0x42321f. If you try to load applet.exe into the IDA disassembler, you
won’t be able to see the decrypted data at 0x42xxxx, because the binary
works with fake PE-Header information. This could be fixed to see
everything in the idb file, but you still would have crypted data in this area
and an extra idc-script would be needed to emulate the decryption. A
much faster way is to load applet.exe into Ollydbg, setting a breakpoint
at 0x40102d with F2, running the code until breakpoint occurs, pressing
F7 for one single step into “area 3” at 0x42321f and then dumping the
whole binary using the Ollydump plugin. This is what I have done to have
one idb file for commenting.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 8 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

5 Anti-debugging and defeating
The next step before we can start reading the disassembly on a relaxed
basis is to defeat a small anti-debugging trick. If you load the lately
dumped “after 1st stage decryption” binary into IDA the new entry point
will be 0x42321f. If you scroll down a little bit to address 0x42330d now,
you’ll see (figure 5.1) a lot of junk instructions (insb, arpl …). As this code
runs in user mode and insb/arpl instructions are privileged, meaning only
usable from kernel mode without an exception and further the last
instruction that makes sense at 0x423308 calls 0x423324, this junk must
be something other than code. A short look using the “hexview” of IDA
discloses that these “instructions” are for real data or better a string.

Figure 5.1:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 9 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

So, to get a “clean” disassembly, just mark the area between 0x42330d
and 0x423322, press ‘U’ and then ‘A’ in IDA. This should give the result
seen in figure 5.2
There are several of these little anti-debugging tricks in the second stage
and it’s wise to clean the complete disassembly before moving on with
manual decompilation. Fortunately for this binary, I have already done all
the boring work. ;)

Figure 5.2:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 10 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

6 TEA decryption and the TIBS
unpacker

Like in many other sophisticated malware, also Peacomm makes use of an
established cryptographic algorithm. One of the first things that can be
done to quickly find signatures of well-known crypto functions is to scan
for them. Ilfak Guilfanov, the developer of IDA Pro, wrote a small plugin
called findcrypt to do this job. Also an Ollydbg port of this tool is
available, but personally I always count on KANAL v2.82 (figure 6.1), a
PEID plugin, which has the most signatures from my experience.

Figure 6.1:

As we can see from the snapshot above two signatures were found. The
first one at 0x423f44 and the second one at 0x423f93. Furthermore, we
get the information, that KANAL found a single DWORD which is used by
multiple algorithms like TEA/N, RC 5/6, SERPENT and ISAAC, which
means we have to read some disassembly.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 11 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Figure 6.2:

In figure 6.2 you can see the main function of the TEA algorithm. It uses a
128bit key (at 0x426A90) for decryption and will be called several times in
a loop until all the data of every PE-section was decrypted.
For further infos and sample implementations of the TEA algorithm consult
the link in the references

Right after decrypting all the data with the tiny encryption algorithm the
TIBS unpacker routine is called. It enumerates all PE-sections as well and
then unpacks its data. The unpacking code can be found between
0x4269f7 – 0x426a6e.

This non-public packer is used very often in malware nowadays and most
Antivirus companies have a generic detection implemented in their
scanning engines by now. So, if a malicious code is not detected by its
variant, e.g. because of its polymorphic behaviour, most AV-engines still
detect it by reporting something like: Trojan:Win32/Tibs.DU.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 12 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

7 Files dropping and Windows driver-
code infection

After all that decrypting/unpacking has been done, a routine at 0x4239df
is called, which disables the windows file protection for tcpip.sys and its
cached copy using the non-exported sfc_os.dll function 5 called
SfcFileException (see the reference link for further information).
Confusingly enough, no more action is done with this file, so I thought it
must be an artefact from former variants. First I believed an earlier
version of Peacomm patched the max number of outbound connections,
which is typical for malware used for DDoS attacks, but friends like Elia
Florio from Symantec research told me, that older variants infected
tcpip.sys to load the rootkit driver spooldr.sys. But for this special case
the kbdclass.sys driver and its cached copy gets infected with additional
code for loading the spooldr rootkit driver. Nicolas Falliere added the info,
that the SFC infection trick was broken for about 3 weeks. So they’ve
started infecting other driver like kbdclass.sys or cdrom.sys.

Next to the infection of kbdclass.sys two files are dropped. First one is a
self-copy of applet.exe saved as spooldr.exe in %systemroot% and the
second file is the overlay containing the spooldr.sys driver, which gets
detached to %systemroot%\system32.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 13 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

8 Finding the OEP and dumping the
native Peacomm.C binary

Right after dropping the files and infecting the keyboard driver, a routine
at 0x423e5b scans the decrypted/unpacked native Peacomm binary for its
libraries and belonging function names and stores the matching addresses
to the functions.

Then a system command is executed to allow spooldr.exe at the
windows firewall with the following command:

netsh firewall set allowed program "%systemroot%\spooldr.exe" enable

The last action is a jump to the OEP at 0x403531 (see figure 8.1).

Figure 8.1:

To get a clean native Peacomm.C binary, just load applet.exe into
Ollydbg, set a breakpoint with F2 at 0x40102d, run using F9, clean bp
with F2, step into with F7, set a breakpoint at 0x423283, run again, clean
bp, step into the allocated memory and search for the jump instructions to
the OEP, as this is a dynamic address for sure. Then set a bp, run again,
clean bp, step into with again and use the Ollydump plugin to save the
binary. That’s all! Or if you are lazy, just use my dumped version, shipped
with this paper. ;)

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 14 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

9 Cleaning the native code from VME
detection tricks

Ok, now as we have a clean native Peacomm.C code for analysis it would
also be nice to run it on a virtual machine like VMWare or VirtualPC.
Unfortunately, we have to defeat two vm-detection routines before
achieving this. The first check is right after the OEP at 0x403389, calling a
routine at 0x4031bc. It’s a VMWare detection using the ComChannel VMXh
magic trick (see Figure 9.1)

Figure 9.1:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 15 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Just some instructions away from the VMWare detection is the second call
to a virtual machine detection routine at 0x40339c jumping to 0x40314e.
This time it is a Microsoft VirtualPC detection using the illegal Opcode
exception trick (see Figure 9.2). For further information on both VM-
detection tricks, read Peter Ferrie’s excellent paper on virtual machine
attacks v2. A Link to this paper is included in the references.

Figure 9.2:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 16 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

If one of the environments is being detected, a jump to a “sleep forever”
loop at 0x403524 is called. One easy way to circumvent this, would be to
patch 2 bytes at 0x40338f with a direct jump to 0x4033a9 (push ebx).
Use your favourite hex-editor or just Ollydbg, if want to do this. Older
variants of Peacomm just shutted down Windows, if a VM was detected,
which is a nice way to switch off honeypots. ;)

10 Dissecting the rootkit driver
Ok, you’ve reached the last part of this small essay. In my opinion the
most interesting one, as this rootkit uses some techniques I haven’t seen
in the past. But before I get into detail, first let’s observe what the
RkUnhooker report said.
The figure 10.1 just shows an oldschool SSDT hook of the native function
NtQueryDirectoryFile and the figures 10.2 and 10.3 reveal the
therewith related hidden processes/files.

Figure 10.1:

Figure 10.2:

Figure 10.3:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 17 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

The figure 10.4 also shows the call to the hooking code for all spooldr*
files.

Figure 10.4:

But this is definitely not really a cutting edge rootkit, right?
And any run-of-the-mill AV solution or personal firewall would detect or
block this.
So, where’s the news?

Take a look at figure 10.5 and you will see a call to the function
PsSetLoadImageNotifyRoutine with a parameter that points to a driver-
supplied callback routine.

Figure 10.5:

On the windows driver developers site OSR-Online we can read:

“PsSetLoadImageNotifyRoutine registers a driver-supplied
callback that is subsequently notified whenever an image is
loaded for execution.”

For detailed information on this function consult the link in the references.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 18 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Figure 10.6 shows us this routine in detail.

Figure 10.6:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 19 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

As you can clearly see from the commented code at the beginning it
checks if a driver or a normal user mode program has been loaded. If it is
a program it gets terminated using the ZwTerminateProcess function and
if it is a driver, the routine scans for its EntryPoint and patches it with:

XOR EAX, EAX
RETN 8

So, after the driver starts, it just returns with 0 and ends.
As we learned from the former chapters this all happens right after
loading an early driver that was infected before, like kbdclass.sys,
cdrom.sys or tcpip.sys, who then immediately spawns our rootkit
driver. Every driver and program that is loaded after spooldr.sys is under
full control of the rootkit. And now it should be clear why a normal SSDT
hook for hiding the driver is enough. No security products, no problems. ;)

Here is a complete list of security products which are disabled at system
start:

Zonealarm Firewall
Jetico Personal Firewall
Outpost Firewall
McAfee Personal Firewall
McAfee AntiSpyware
McAfee Antivirus
F-Secure Blacklight
F-Secure Anti-Virus
AVZ Antivirus
Kaspersky Antivirus
Symantec Norton Antivirus
Symantec Norton Internet Security
Bitdefender Antivirus
Norman Antivirus
Microsoft AntiSpyware
Sophos Antivirus
Antivir
NOD32 Antivirus
Panda Antivirus

Check out the After-1st-XOR-Decryption-Dump.idb file for details which
executables are in conjunction with these products.

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 20 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

Another sneaky trick can be seen in figure 10.7. This special function
scans the explorer.exe process and hooks the import entry of the
PeekMessageW function, which is called very often by explorer, with a
special shellcode that deletes the import entry for PeekMessageW and
spawns the spooldr.exe in this trusted space. This is a nice trick to omit
the usage of CreateRemoteThread, which most security products monitor
today and as not all available sec-software were included in the
termination list, it was a wise decision to use this much more
sophisticated way.

Figure 10.7:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 21 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

The last thing what is worth being mentioned, can be seen in figure 10.8
The rootkit also locks two files, ntoskrnl.exe and the infected
kbdclass.sys driver, using NtLockFile. My assumption was that this is
to reject access to these files from user mode, e.g. when tools like
Hijackthis try to scan for suspicious changes in these files, because file
locking is no stumbling block for kernel mode tools like rootkit scanners or
AV-products.

Figure 10.8:

Peacomm.C – Cracking the nutshell www.reconstructer.org Page 22 of 22
File: Peacomm.C – Cracking the nutshell.pdf 21/09/2007

11 Conclusion
After this small excursion into the world of Peacomm.C it should be clear
that the developers of this malware deal with a lot of nasty tricks to gain
access to victims’ machines and hide from detection, even on standard
protected boxes. Analyzing malware gets harder and just using the usual
auto-analysis tools, seems not very target-aimed. The AV and PFW
industry has to think of better heuristics in behaviour analysis, smarter
ways of generic unpacking and more reliable system integrity mechanisms
to safely recognize such cunning tricks used in sophisticated malware like
this one. As 100% solutions will stay a pious hope, reverse engineering
knowledge is still the weapon of choice for the analyst. I hope you enjoyed
this paper a little and as always - constructive reviews are much
appreciated.

12 References
Peerbot: Catch me if you can
http://www.symantec.com/avcenter/reference/peerbot.catch.me.if.you.can.pdf
Fast-Flux Service Networks
http://www.honeynet.org/papers/ff/fast-flux.pdf
Peer-to-Peer Botnets: Overview and Case Study
http://www.usenix.org/events/hotbots07/tech/full_papers/grizzard/grizzard.pdf
The Tiny Encryption Algorithm (TEA)
http://www.simonshepherd.supanet.com/tea.htm
Attacks on Virtual Machines v2
http://pferrie.tripod.com/papers/attacks2.pdf
Disabling WFP on a file for 1 minute via undocumented SFC API
http://www.bitsum.com/aboutwfp.asp#Hack_Method_3
The PsSetLoadImageNotifyRoutine function
http://www.osronline.com/DDKx/kmarch/k108_5sc2.htm

Big thanks go to Elia Florio and Nicolas Falliere/Symantec, Val
Smith/Offensive Computing and Thorsten Holz/German Honeynet Project
for reviewing this paper!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

